

Welcome to crow documentation!

Crow is a multi-GPU and multi-CPU implementation of non-negative matrix tri-factorization.

Contents:

	Setup guide

	Docker containers
	Connect to a running container

	Docker volumes

	Non-sudo users

	Test run

	Supported platforms

	Host requirements
	Quick setup

	CUDA

	Docker engine

	Nvidia-docker

	Add user to docker group

	Legacy nvidia-docker
	nvidia-docker-compose

	Manual setup
	Python

	CUDA

	openMPI

	openBLAS

	NumPy

	Other system dependencies

	Install crow and python dependencies

	GPU module dependencies

	Install crow module

	Test the configuration

	Tutorial
	Examples

	Command line arguments

	Docker volumes

	Data manipulation
	Input data

	Convert between different csv and coo formats

	Convert between npz and csv

	Pickle to csv

	Download data

	Benchmark
	Quick start

	Benchmark list

	Visualize results

	Manual setup

	Co-clustering example
	Setup instructions

	Run Experiments

	Reference

Indices and tables

	Index

	Module Index

	Search Page

Setup guide

We recommend building and running CROW with docker to avoid recompiling libraries manually. If you want to install on host server directly, follow the Manual setup.

Before you use make you need to clone the repository crow git repository [https://github.com/acopar/crow].

git clone https://github.com/acopar/crow && cd crow

The following command will install docker and copy crow executables. Depending on whether you have CUDA-enabled GPUs, it will also install nvidia-docker and CUDA toolkit.

make install

In case of any problems, check your dependencies and follow the requirements setup guide.

Docker containers

Start the container with provided crow-start command:

crow-start

You can force CPU-only version on a system with GPUs available with crow-start cpu. Container will run in the background. You can check if the container is running with docker ps. You can stop the container with crow-stop command, or use specific docker commands (Tutorial [https://docker-curriculum.com/]).

Connect to a running container

Then connect to a container with either crow-exec, like this:

crow-exec

Alternatively, you can ssh into the container. For login, crow-ssh uses dedicated identity files that are located at ~/.ssh/crow and ~/.ssh/crow.pub. The keys are generated during installation added to container’s authorized keys automatically.

crow-ssh

You can login into container as admin like this:

crow-sudo

Docker volumes

Crow docker images makes use of the following external volumes.

	crow: path to the crow source code (for development versions).

	data: path to directory with data, mounted read-only.

	results: this is where the factorized data will be stored.

	cache: path to directory, where the application stores intermediate files. Starting with empty folder, the cache can take several gigabytes, depending on your data so make sure that you have enough space on the partition. You can safely clean this folder, but note that it may take some time to process the data again.

By default, mount points for each volume points to a folder in the current working directory. Refer to the data section for more information on how to manage folders shared with the container. Any data not stored in shared folders will disappear when you stop the container.

Now, you can proceed to the Tutorial.

Non-sudo users

Users without administrator privileges need to be in docker group. Also, CUDA and nvidia-docker2 need to be installed on the host. You can manage containers with executables located in scripts folder (add it to your PATH). Once inside docker the container, follow the Tutorial on how to factorize your data.

Test run

After you have the environment up and running, you can use this command to test if everything works correctly.

crow-test -g

This command generates a small random dataset and tries to factorize it. The -g switch tells the test to use the GPUs.

Documentation for more in-depth benchmarks is found here Benchmark.

Supported platforms

This software has been developed and tested for Linux platform. The provided docker images should also work on other platforms. Follow the official instructions [https://docs.docker.com/engine/installation] on how to set up docker environment for your platform.

Host requirements

Docker install requirements for all environments:

	docker-ce >= 17.03 [https://docs.docker.com/engine/installation]

Requirements for GPU environments:

	CUDA >= 8.0 [https://developer.nvidia.com/cuda-downloads]

	nvidia-docker >= 2.0 [https://github.com/NVIDIA/nvidia-docker]

If you don’t have these programs on the system, you can install them using make (see below) or install them manually. If you install dependencies manually, run scripts/install-crow.sh after to install crow executables.

Quick setup

You can use the provided install scripts to setup requirements automatically. Currently Ubuntu-based systems are supported through helper scripts, otherwise, use manual instructions below. Clone the repository to access install scripts.

git clone https://github.com/acopar/crow && cd crow

Install the framework and its dependencies (Ubuntu users):

make install

CUDA

If you do not have nvidia driver and CUDA on your system, refer to this section: CUDA install guide.

Docker engine

Here are instructions for Ubuntu Linux. For other Linux distributions and other platforms refer to the Official docker install guide [https://docs.docker.com/engine/installation].

sudo apt-get install apt-transport-https ca-certificates curl software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
sudo apt-get update
sudo apt-get install docker-ce

Nvidia-docker

Download and install nvidia-docker. These instructions will work on most Linux distributions. Alternatively, Ubuntu and CentOS users can also use the provided deb and rpm packages [https://github.com/NVIDIA/nvidia-docker]. This software is for GPU hosts only.

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update

Install nvidia-docker2 and reload the Docker daemon configuration
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd

Add user to docker group

In order to execute docker commands as a regular user, you need to have docker privileges:

sudo gpasswd -a $(whoami) docker

Legacy nvidia-docker

Use of nvidia-docker v1.0 is deprecated, we recommend the new v2.0, which is supported in the latest version of crow. For backward compatibility, here are instructions on how to install the legacy version:

wget -P /tmp https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1_amd64.tar.xz
sudo tar --strip-components=1 -C /usr/bin -xvf /tmp/nvidia-docker*.tar.xz && rm /tmp/nvidia-docker*.tar.xz

In order to use nvidia-docker, you need to run nvidia-docker-plugin at boot. If this was not enabled through nvidia-docker packages (deb, rpm), you can run this command on system boot.

sudo -b nohup nvidia-docker-plugin > /tmp/nvidia-docker.log

nvidia-docker-compose

Legacy versions also require nvidia-docker-compose library:

git clone https://github.com/eywalker/nvidia-docker-compose
sudo cp nvidia-docker-compose/bin/nvidia-docker-compose /usr/local/bin

This application depends on yaml python module, which can be installed with pip.

sudo pip install pyyaml

or using the packages from your distribution.

sudo apt-get install python-yaml

Manual setup

Alternatively, you can install manually (refer to the dockerfile for details).
Install requirements:

	Python == 2.7

	CUDA == 8.0

	openMPI >= 2.0 (make sure that the –with-cuda flag is set during configure time)

	openBLAS >= 1.12

Python

apt-get install python-dev python-pip

CUDA

If you have CUDA-enabled GPU devices, you have probably already installed nvidia drivers and CUDA. If not, you can install them from your package repository, like this:

sudo apt-get install nvidia-cuda-toolkit
reboot # nvidia driver requires reboot

This should also take care of installing current nvidia driver. If you want the latest version of CUDA or specific instructions for different platform, follow the Official CUDA installation guide [http://docs.nvidia.com/cuda/cuda-installation-guide-linux].

openMPI

wget https://www.open-mpi.org/software/ompi/v2.0/downloads/openmpi-2.0.0.tar.gz
tar xzf openmpi-2.0.0.tar.gz
cd openmpi-2.0.0
./configure --with-cuda=/usr/local/cuda --prefix=/openmpi
make -j$(nproc) && make install

openBLAS

git clone https://github.com/xianyi/OpenBLAS
cd OpenBLAS && make -j$(nproc) FC=gfortran && make PREFIX=/OpenBLAS install
echo '/OpenBLAS/lib' > /etc/ld.so.conf.d/openblas.conf && ldconfig

NumPy

Compile numpy with openblas support

pip install cython
git clone https://github.com/numpy/numpy
printf "[openblas]\n" \
"libraries = openblas\n" \
"library_dirs = /OpenBLAS/lib\n" \
"include_dirs = /OpenBLAS/include\n" \
"runtime_library_dirs = /OpenBLAS/lib\n" >> numpy/site.cfg

cd numpy && python setup.py config && \
 python setup.py build -j $(nproc) && python setup.py install

Other system dependencies

Install libraries required for cuda-cffi module and zmq module.

apt-get install libffi-dev libzmq3-dev

Install crow and python dependencies

Set up environment variables, so it can find CUDA, OpenBLAS and openMPI libraries. To make changes permanent after reboot, you need to append these lines to /etc/profile or ~/.bashrc (depending on your configuration).

export PATH="/OpenBLAS/bin:/openmpi/bin:$PATH"
export LD_LIBRARY_PATH="/OpenBLAS/lib:/openmpi/lib:$LD_LIBRARY_PATH"
export CUDA_ROOT="/usr/local/cuda"

First download crow source from github.

git clone https://github.com/acopar/crow
cd crow

Install python requirements for CPU and GPU systems.

pip install -r requirements.txt

GPU module dependencies

Install python modules for GPU environment. Skip this step on computer without GPU devices.

pip install -r requirements-gpu.txt

You may need to get more recent version of scikit-cuda.

git clone https://github.com/lebedov/scikit-cuda
cd scikit-cuda && python setup.py install

Install crow module

Finally, you can install the package:

python setup.py install

You can also use pip to install current package.

pip install -e .

Test the configuration

You can check if the installed modules work correctly by importing them. Also check if your CUDA_ROOT and PATH environment variables are set correctly. If you use different distribution, path to CUDA can be different.

echo $CUDA_ROOT
ls $CUDA_ROOT

python -c 'import pycuda' # CUDA for python library
python -c 'from cuda_cffi import cusparse' # for sparse GPU operations
python -c 'import numpy; numpy.__config__.show()' # check blas info

Tutorial

The application reads the provided coo file into data matrix X (see data manipulation on how to structure such file). Then it the data into three non-negative latent factors, such that:

\[X \approx U S V^T\]

Examples

Serial configuration using one CPU core where both factorization ranks are 20.

crow -k1 20 data.coo

Using single GPU, number of iterations is set to 200 and factorization ranks are 20x30.

crow -g -k1 20 -k2 30 -i 200 data.coo

Example usage for 4-GPU run with 2x2 block configuration and factorization rank 20.

crow -g -b 2x2 -k1 20 data.coo

When the process is finished, you should have the following files in results directory:

	U.npz - contains left factor matrix.

	V.npz - contains right factor matrix.

	S.npz - contains middle factor matrix.

Command line arguments

The following options can be set:

	-b: block configuration, for example 2x2.

	-e: calculate and print error function in each iteration.

	-g: use this argument to run on GPUs. By default, only CPU cores will be used.

	-i: maximum number of iterations, default is 100.

	-k1: left factorization rank. Defines number of latent vectors of matrix U.

	-k2: right factorization rank. Defines number of latent vectors of matrix V. By default, value of k1 is used.

	-o: impose orthogonality in factors U and V. By default non-orthogonal NMTF will be used.

	-p: parallelization degree, by default number of blocks equals to parallelization degree, but you can use parallelization degree smaller than the number of blocks. Useful to reduce memory requirements in GPU applications.

	-s: use sparse data structures. Do not use this if the matrix density is larger than 10%.

	-t: additional stopping criteria. By default, factorization will run for the number of iterations specified by -i. Available arguments are e4, e5, e6, e7. For example, when passing e6 parameter, the factorization stops after error function in two consecutive iterations changes for less than 10^-6.

Arguments:

	Single argument specifies path to data file. You can also provide basename of data files that exist in data directory.

Docker volumes

Crow docker images makes use of the following external volumes.

	crow: path to the crow source code (for development).

	data: path to directory with data, mounted read-only.

	results: this is where the factorized data will be stored.

	cache: path to directory, where the application stores intermediate files. Starting with empty folder, the cache can take several gigabytes, depending on your data so make sure that you have enough space on the partition. You can safely clean this folder, but note that it may take some time to process the data again.

You can use symbolic links to connect path to your data, like this:

ln -s <path-to-your-data-folder> data
mkdir results
mkdir -p ../tmp/crow-cache
ln -s ../tmp/crow-cache cache

Alternatively, customize docker command and modify the volume paths to point to the desired locations:

docker run -d "$runtime" --name="crow" -p 22 -v $PWD/crow:/home/crow/crow -v $PWD/data:/home/crow/data:ro -v $PWD/cache:/home/crow/cache -v $PWD/results:/home/crow/results --rm acopar/crow

Data manipulation

Before you can factorize your data, you first need to convert it into an appropriate format.

Input data

The data can be provided in coordinate list format (coo), which is a form of csv file, where each row describes one element in a matrix with row, column, value and header stores matrix dimensions. In header, we define matrix dimensions n,m. After that, each row of the file represents one non-zero value in the matrix. In each row, the first column represents index at first dimension i, second column index of second dimension j and third column represents the value of data matrix X at location X[i,j].

For example, consider this 2D matrix:

[[1, 0, 0], [5, 5, 0]]

Corresponding coo data file would look like this:

2,3
0,0,1
1,0,5
1,1,5

The following formats are used:

	coo - this is the default input data format, using coordinate list representation.

	npz - this method uses numpy.savez [https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html]. Default format for resulting factors. It is also used to cache dense or csr sparse matrices internally.

	pkl - used to store other python data, such as dictionaries.

	csv - not used internally, but supported through conversion. Note that when converting back, there is no header line.

Convert between different csv and coo formats

By default, data format used is coordinate list file (coo), and is currently used to represent input data for both sparse and dense matrices. However, dense matrices are often formated with a 2D csv table, separated by commas or tabulars. The following commands show examples how can you convert existing csv file into coo format. If there is a header line, you need to provide an option, so the converter knows to ignore the first row.

crow-conv --header 2d-table.csv coo-value-list.coo

Examples with explicit delimiter (comma by default) and no header.

crow-conv -d comma 2d-table.csv key-value.coo
crow-conv -d tab 2d-table.tab key-value.coo

Convert between npz and csv

Without command line arguments, the conversion is done based on file extension. If the file extension does not correspond to the content, use arguments to explicitly tell the input and output type. Arguments are checked with crow-conv --help.

crow-conv results/U.npz results/U.coo
crow-conv results/U.npz results/U.csv

Pickle to csv

There is also a convenience tool, which can convert pickled numpy array to csv format (dense).

crow-conv test.pkl test.csv

Download data

To download preprocessed benchmark datasets, use the provided get_datasets.sh script.

scripts/get_datasets.sh

This script downloads five datasets that have already been converted into coordinate list format:

	ArrayExpress [http://file.biolab.si/crow/ArrayExpress.coo]: 22283x5896, file size: 3.5GB

	TCGA-BRCA [http://file.biolab.si/crow/TCGA-BRCA.coo]: 1222x60483, file size: 1.5GB

	Fetus [http://file.biolab.si/crow/fetus.coo]: 25569x25608, file size: 622M

	Retina [http://file.biolab.si/crow/retina.coo]: 25823x25822, file size: 2.9GB

	Cochlea [http://file.biolab.si/crow/cochlea.coo]: 25824x25824, file size: 5.6GB

	TCGA-Methyl [http://file.biolab.si/crow/TCGA-Methyl.npz]: 10181x485577, file size: 19GB

	TCGA-Methyl (cancer gene subset) [http://file.biolab.si/crow/TCGA-Methyl-cancer.npz]: 10181x14299, file size: 556MB

Benchmark

When running benchmarks, you can read the time of iteration for each configuration from the terminal. If you wath to visualize, you can use the automated scripts, which use docker image.

Quick start

Download repository crow-plot benchmarking and plotting framework and run it. Note that for this to work, you need to have a running crow docker container.

git clone https://github.com/acopar/crow-plot
cd crow-plot
./speedup-bench.sh

If everything works correctly, you should have a few png and pdf files in img directory. The results should give you an idea on speedups you can get from your hardware configuration.

Benchmark list

Here is a list of available benchmarks:

	speedup-bench.sh: comparison of speedup on 1-4GPUs compared to a single processor configuration.

	efficiency-bench.sh: efficiency and communication overhead of multi-block configurations as described by percentage of linear speedup.

	rank-bench.sh: impact of factorization rank on speed.

	balanced-bench.sh: speedup of balanced partitioning compared to imbalanced partitioning on sparse datasets.

By default, GPU and multi-GPU configurations are compared against single-processor configuration. If you want to compare the speedup of multi-processor against a single-processor as well, add -a option to each benchmark script, for example:

./speedup-bench.sh -a

To test orthogonal NMTF, you need to provide -o option to the script:

./speedup-bench.sh -o

Note, that for orthogonal visualizations, you need to run visualization separately (see the next section).

Visualize results

The results that you see in the output of benchmark script, are also stored in the results folder in csv files. If you want to visualize the results, you can use the provided scripts/crow-plot script, like this:

scripts/crow-plot python /app/crowpl -a speedup ArrayExpress TCGA-BRCA fetus retina cochlea

Option -a defines which type of visualization to perform. Available visualizations types are:

	speedup: visualize speedup compared to single-processor approach.

	efficiency: visualize efficiency on multi-block configurations.

	transfer: visualize percentage of communication overhead.

	k: visualize iteration times for different factorization ranks.

	balance: visualize speedup of balanced partitioning over imbalanced on sparse data.

To visualize results for orthogonal NMTF benchmarks, you also need to provide -o argument.

scripts/crow-plot python /app/crowpl -o -a speedup ArrayExpress TCGA-BRCA fetus retina cochlea

Manual setup

To run benchmarks without visualization, it is not necessary to install the crow-plot package. You can run this command directly, provided that crow docker container is running.

python crowpl/benchmark.py ArrayExpress TCGA-BRCA fetus retina cochlea

Benchmark command line arguments:

	-a: run all experiments, including multi-processor.

	-c: run with disabled data transfer for communication overhead calculation.

	-i: run sparse datasets imbalanced, thus checking the partitioning speedup.

	-o: run orthogonal NMTF (Ding et al., 2006) instead of default non-orthogonal (Long et al., 2005) method.

	-r: benchmark factorization rank values.

	-u: update, configurations that were already computed are skipped.

To avoid the use of docker image for visualization, you can install crow-plot module manually. System dependencies of crow-plot are imagemagick and latex in addition to python modules listed in requirements.txt.

python setup.py install

After the installation is complete you can run crowpl module like this:

python crowpl -a speedup ArrayExpress TCGA-BRCA fetus retina cochlea

Co-clustering example

Setup instructions

Before you run this example, you need to install CROW framework and start the container.

git clone https://github.com/acopar/crow-example
cd crow-example
pip install -r requirements.txt

Run Experiments

python main.py

Reference

Index

Docker containers

Start the crow container with crow-start command:

crow-start

If you do not have sufficient permissions to run scripts/install-crow.sh, use the provided RUN.sh script.
If this fails for any reason, try to start the containers manually (instructions below). Otherwise, you can skip the rest of this section and proceed with connecting to a running container.

Start containers manually

Start GPU container

Before the initial run of the container, you need to create docker volume for CUDA-related libraries. You only need to do this once, unless you remove the volume. Change the volume name depending on your driver version. You can check the driver version with nvidia-smi, or use the provided query script scripts/get_volume.py. It this fails, check again if nvidia-docker-plugin is set up correctly.

docker volume create -d nvidia-docker --name=nvidia_driver_367.57

After that, you can run the container with nvidia-docker-compose, which will take care of pulling the official docker image from Docker hub.

nvidia-docker-compose up

This process is automated in RUN-GPU.sh script.

CPU only container

For CPU only install, use docker-compose directly.

docker-compose up

This process is automated in RUN-CPU.sh script.

Without docker-compose

You can manually start CPU instances of docker container without docker-compose, but you will need to provide path to external volumes explicitly. With this command, you are dropped directly into the contanier and you can skip directly to the Tutorial.

docker run -v <source-dir>:/home/crow/src
 -v <data-dir>:/home/crow/data:ro
 -v <cache-dir>:/home/crow/cache
 -v <results-dir>:/home/crow/results
 --rm -it acopar/crow /bin/bash

Connect to a running docker container

If you used one of the install scripts, shortcuts were copied into your path, and you can use one of the following commands to attach to your running container:

crow-exec
crow-ssh

If this works, you can proceed to the Tutorial.

If these commands are missing, you most likely just need to run scripts/install-crow.sh. If this fails, check the output of docker ps to see if the container is running. You may need to run crow-start again.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to crow documentation!

 		
 Setup guide

 		
 Docker containers

 		
 Connect to a running container

 		
 Docker volumes

 		
 Non-sudo users

 		
 Test run

 		
 Supported platforms

 		
 Host requirements

 		
 Quick setup

 		
 CUDA

 		
 Docker engine

 		
 Nvidia-docker

 		
 Add user to docker group

 		
 Legacy nvidia-docker

 		
 nvidia-docker-compose

 		
 Manual setup

 		
 Python

 		
 CUDA

 		
 openMPI

 		
 openBLAS

 		
 NumPy

 		
 Other system dependencies

 		
 Install crow and python dependencies

 		
 GPU module dependencies

 		
 Install crow module

 		
 Test the configuration

 		
 Tutorial

 		
 Examples

 		
 Command line arguments

 		
 Docker volumes

 		
 Data manipulation

 		
 Input data

 		
 Convert between different csv and coo formats

 		
 Convert between npz and csv

 		
 Pickle to csv

 		
 Download data

 		
 Benchmark

 		
 Quick start

 		
 Benchmark list

 		
 Visualize results

 		
 Manual setup

 		
 Co-clustering example

 		
 Setup instructions

 		
 Run Experiments

 		
 Reference

_static/up.png

_static/up-pressed.png

